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ABSTRACT

The attenuation of a monochromatic signal in the presence of discrete
noise in one dimension is investigated numerically. The predicted Gaussian
attenuation is verified by the numerical program, which is based on Riemann’s
implicit solution of the exact equation for the unidirectional propagation of
shockless sound. Two new results are also presented. In the first, the transition
from Gaussian to Bessel dependence as a function of resolution in the detection
of a signal is observed. This results shows that the fundamental property of time
reversibility can only be established if the overall system of the waves and the
observer is considered. In the second result, the evolution of the amplitude of a
signal injected downstream from the noise is investigated. The Gaussian
attenuation is also observed in this case. This result explicitly shows that the
attenuation length depends on the distance the signal has traveled, thus

displaying memory and breakdown of translational invariance.
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I. INTRODUCTION

In the presence of high intensity broad band noise, a small amplitude
signal attenuates due to nonlinear interactions with the noise. If the noise is
isotropic, the amplitude attenuates as an exponential. This result was first
predicted by Landau and Rumer (1937) in connection with ultrasonic attenuation
due to thermal phonons in a dielectric at low temperature. Westervelt (1976)
extended these ideas to the case where the broad band noise was due to
classical sound waves. Experimental observations of the attenuation of sound in
superfluid helium (Maris, 1973) and of sound in water (Stanton and Beyer, 1978
and 1981) support these results.

The limiting case of interaction with noise in one dimension is derived

from Riemann’s exact equation for lossless propagation of unidirectional sound
ut+(c+Bu)ux =0, (1.1)

where u is the particle velocity, B = 1 + (p/c)(dc/dp) is the nonlinear coefficient, ¢
is the equilibrium value of the speed of sound, and p is the ambient density. The
amplitude of the signal is calculated to attenuate as a Gaussian exp(-I'x?), where
x is the distance from the source, and where the nonlinear attenuation coefficient

is

2n2B2f2 ©
[=——|Ldf , 1.2
el (1.2)

where f; is the frequency of the signal and I is the spectral intensity of the noise

at frequency f (Rudenko and Chirkin, 1975; Rudenko and Soluyan, 1977). The




integral is the intensity of the noise. Hence, in the shockless regime B is
independent of the details of noise spectral distribution. It should be noted that
this is consistent with the exp(-I'x%) solution to the evolution equation dA/dx = —
2I'xA for the amplitude A. If I were dependent upon the distribution, then the
spectral evolution of the noise due to nonlinear interactions would necessarily
cause I to be a function of position, which would invalidate the Gaussian

solution.

The basic nonlinear interaction of acoustic waves is a three-wave
resonance, so that waves with frequency f; and f, scatter to produce waves with
frequencies fs = |f; + f,|. Furthermore, because these waves are nondispersive
the interactions can only be collinear (Rudenko and Soluyan, 1977). For
random waves in two and three dimensions, energy in the noise components
redistributes irreversibly by collinear resonant interactions. Randomization in
angle is brought about by slower collision processes with a local transfer
between adjacent rays (Newell and Aucoin, 1971). After a time determined by
the nonlinearities, a closed system of interacting random waves can thus reach
thermodynamic equilibrium, and small fluctuations about this state relax
exponentially with an attenuation coefficient proportional to the noise intensity.
Because the noise effectively acts as a heat bath, it is appropriate to refer to the
absorption of sound by noise in this case.

The predicted Gaussian attenuation in one-dimensional nonlinear
acoustics brings together two physically significant results. First, because a
small amplitude signal can be regarded as a fluctuation of the noise, and
because this fluctuation does not relax exponentially, we infer that a system of
interacting, collinear, nondispersive waves is inherently far off equilibrium. This
results from both a lack of angle randomization and the fact that all spectral

components are in resonance with each other in this case.
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A second aspect of a Gaussian attenuation is that it breaks translational
invariance because the attenuation coefficient is now a function of position.
Specifically, by taking measurements at several distances from the source of a
signal, one can calculate both the location and strength of the source. This
cannot be done if the attenuation is exponential. This is physically significant
because the equations that describe the evolution of nonlinear noise and its
interaction with a monofrequency signal are translationally invariant.

An experiment to measure the predicted Gaussian attenuation has been
carefully investigated by Larraza et al. (1996). In this experiment, the
dimensionality is controlled by performing measurements in a long traveling
wave tube driven at frequencies below the first cutoff. The theory is in excellent
agreement with the experimental results only after it is modified to incorporate
wall losses. The agreement is shown as the frequency, noise level, and
distance from the source are varied. In addition, Larraza et al. (1996) observed
the spectral intensity of the high-frequency tail of fully developed shockless
noise to be an f~* power law in the frequency f, in accord with Kutznetsov’s
theory (1970). This power law is a consequence of the far off equilibrium nature
of the system.

The purpose of this thesis is to numerically investigate the predicted
Gaussian attenuation. In Ch. |l we give a general theoretical background for
nonlinear acoustics in one dimension. In Ch. Il we describe the details of the
numerical code. The program is tested by comparing the numerical resuits with
the predictions of theory for the cases of pure tone propagation and suppression
of a signal by a pump. In Ch. IV we present numerical simulations of the
absorption of sound by noise. We verify the absorption of sound by noise and
also present two new results. In the first, we investigate the transition from

Gaussian to Bessel as a function of resolution in the detection of a signal in the
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presence of noise. In the second result, as a test of the breakdown of
translational invariance, we investigate the evolution of the amplitude of a signal
injected downstream in the presence of noise. Conclusions and possible future

work are presented in Ch. V.



I THEORY

In this chapter, we describe Riemann’s equation for sound propagation in
one dimension in a barotropic fluid, and then derive the general shock inception
distance. We also present the analytic solutions to some special cases. The
simplicity of Riemann’s solution allows the determination of exact and asymptotic
explicit solutions in the preshock region. Examples include Fubini’s (1935) pure
tone radiation problem, Fenlon’s (1970) generalization to multiple frequency
sinusoidal source, Kutznetsov’s (1970) asymptotic 2 spectrum for broadband
noise, and Rudenko and Chirkin’s (1975) Gaussian attenuation of a signal due to

interactions with normally distributed random noise.

A. RIEMANN’S EQUATION

The basic equations of motion for an isentropic perfect gas are governed

by the continuity equation and Newton’s second law
Py +Upy +pu, =0, (2.1a)
uy+uu, +pp, =0, (2.1b)
respectively, where p is density, p is total pressure, and u is the particle velocity.
The subscripts x and t denote partial differentiation with respect to the space and

time coordinates, respectively. Egs. (2.1) must be supplemented with the

equation of state of an isentropic ideal gas

Y
P _[P
Po (po) ’ 22)




where p, and p, are the ambient density and pressure, respectively, and v is the
ratio of specific heats of the gas.

For the situation where the waves are propagating in one direction, Egs.
(2.1) and (2.2) imply Riemann’s equation (Blackstock, 1972)

u; + (c + Bu)ux =0, (2.3)

where ¢ = (0p/dp), is the equilibrium value of the speed of sound, and where for
an ideal gas, the nonlinear coefficient is given by § = (1+y)/2. From Eq. (2.3), the
instantaneous speed of propagation of a point in the wave with particle velocity u
is c+Bu. Thus, points of the wave having different particle velocity propagate at
different speeds.

A general implicit solution of Eq. (2.4) with the x = 0 boundary condition
u(0,t) = f(t) is given by

X

u(x,t) = f(t - Elﬁ_u(it_)) , (2.4)

as can be verified by direct substitution into Eq (2.3). Thus the velocity at the .

boundary x = 0 determines the velocity at x > 0 through the retarded time

X
c+pu’

(2.5)

B. SHOCK INCEPTION DISTANCE

Suppose u, is produced at x = 0 at time t,, and a greater velocity u, is




produced at a later time t,. Riemann’s equation breaks down when the second
disturbance overtakes the first, which will eventually occur at some x > 0. This
overtaking yields a discontinuity (infinite slope or shock) in u. Ift, and t, differ by
a finite amount, a discontinuity will occur at a distance less than x, because the
waveform u(x,t) continuously distorts as time progresses. We are thus led to
consider velocity disturbances u and u+du and at x = 0 that are an infinitesimal
time dt apart. If du > 0, the disturbances will coincide at some distance L. If T is

the elapsed time,
[c+pulT=L, (2.6a)

[c+Blu+du)|(T-at)=L, (2.6b)

corresponding to the first and second disturbances, respectively. Multiplying out

Eq. (2.6b), substituting Eq. (2.6a), and solving for L, yields

_ (c+Bf)?

L=gaf/at -

(2.7)

The quantities f and df/dt are the values of the velocity and its slope at x = 0,
respectively. The expression (2.7) gives the distance at which an initial positive
slope becomes infinite. (A negative slope never becomes infinite.) For any
solution to Riemann’s equation to be valid at some distance x, it must be verified
that x < L for all values of f(t).

C. PURE TONE PROPAGATION

For the propagation of a pure tone, the solution (2.4) subject to the x = 0




boundary condition
u(0,t) = u, sin(wt) , (2.8)

may be written in the form of Fourier series
u=u, Y B,sin(not) , (2.9)
n=1

where in the preshock region the Fourier coefficients are given by (Fubini, 1935)

5 _ 2J,(Bugox/c?)
"7 nBuyox/c?

(2.10)

where J, is the Bessel function of order n.
For the x = 0 velocity (2.8), the minimum value of the shock length (2.7)
corresponds to ot being an integral multiple of 2r. The minimum distance at

which shocking occurs for a pure tone is thus

(2.11)

D. SUPPRESSION OF A SIGNAL BY A PUMP

The simplest problem of interaction of sound with sound is given by the x

= 0 boundary condition



u(0,t) = u, sin(wpt) + ug sin(ot) (2.12)

where we focus here on the interaction of a strong pump wave of low frequency
o, with a weak signal of high frequency w,. The signal has little effect on the
propagation of the pump. However, the pump will modulate the signal and
generate sidebands at frequencies o+ ,, thereby removing energy from the

signal. An approximation to Fenlon’s (1970) solution for the evolution of the

signal is

u(x,t) = usJo(Bupmsx/cz)sin[ms(t— x/¢c)] . (2.13)

The amplitude of the signal depends only on the particle velocity of the pump,
the frequency of the signal, and the distance. The signal vanishes at the zeros

of the Bessel function, at which the energy has been temporarily completely
pumped into adjacent sidebands.

E. ABSORPTION BY NOISE

For the case of a weak signal of frequency f in the presence of finite-
amplitude broadband noise, the amplitude of the signal attenuates as a

Gaussian exp(-I'x?), where

2 2 2f2
I = nCB4 u?ms , (2.14)

where u,, is the rms velocity of the noise (Rudenko and Chirkin, 1975; Rudenko
and Soluyan, 1977). Broadband noise may be considered by the x = 0 boundary
condition



N
Unoise(0,1) = A D cos(o,t + o) , (2.15)

n=1

where A is the peak velocity of each component of the noise, o, are densely
distributed frequencies, and ¢, are randomly distributed phases. The Gaussian
attenuation thus results as a limiting case of multiple pump waves with random
phases. When a signal is interacting with one pump, the restitution effect
(amplitude increasing with distance) is lost when the interaction occurs with a
large number of pumps with random phases. Because of the central limit
theorem, the noise described by (2.15) should approach a normal distributed
noise for a sufficiently large number N. In this limit, a theory formulated in terms
of the noise (2.15) should accurately yield the Gaussian attenuation.

By squaring Eq. (2.15) and averaging over time, we determine the square
rms particle velocity of the noise. Solving for A yields

2
A = u,ms\[-l\:l. (2.16)

The approach to the Gaussian attenuation can be probed by increasing N while

keeping u,,, constant.
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lll. NUMERICAL METHOD

In this chapter, we describe the numerical method used to integrate
Riemann’s equation for shockiess sound propagation in one dimension. We test
the numerical program by comparing its results to theory for the cases of pure

tone radiation and suppression of a signal by a pump.

A. FORWARD PROPAGATION METHOD

As a numerical convenience, we choose B =1 and ¢ = 1 so that the
dimensionless Riemann'’s equation (2.3) and the expression (2.5) for the

retarded time become

ou ou
E-+(1+u)gx—— 0, (3.1)
and
X
vt (3.2)

respectively. As stated in Sec. 2.1, a general implicit solution of Eq. (3.1) with
the x = 0 boundary condition u(0,t) = f(t) is given by u(x,t) = f(z).

Eq. (3.2) determines a set of straight lines in the x-t plane. The slope of
each line is determined by the value of the velocity at the boundary at a given
time (wavelet). These lines are known as characteristics, where the parameter 1
is the time base for the source signal witht =t at x =0.

The principle of the forward propagation method stems from the fact that
the characteristics represent the trajectories of motion of the different wavelets in
the x-t plane. The velocity of propagation of a wavelet is equal to 1+u where u

is the assigned value of the velocity of the wavelet at the boundary. The method



is implemented by storing at the boundary the wavelets and their corresponding
times. In the propagation of the initial waveform the first incremental distance
produces a new time array associated with the velocity array. While at the origin
the spacing between time arrays is commensurate, once the waves propagate a
small distance the time between adjacent elements is stretched or compressed
according to Eq. (3.2), which physically corresponds to distortions of the initial
waveform. Appendix A shows a C-language numerical program that implements

the forward propagation method.

B. DISCRETE FOURIER TRANSFORM

Our main emphasis is in determining the evolution of the amplitude of a
monochromatic signal in the presence of noise. As we forward propagate the
boundary condition of a time series with the signal plus noise, sidebands of the
noise appear about the signal’'s frequency. Also, the amplitude of the signal is
expected to attenuate with distance. It is thus necessary to extract the signal
from the noise at a distance x from the source. We achieve this by Fourier
analyzing the waveform at the frequency of the signal, which amounts to time
averaging the in-phase and quadrature components of the waveform. This
process is referred to as the “discrete Fourier transform” (DFT) because the
integration is performed with a finite (rather than continuous) time increment and
is performed over a finite (rather than infinite) time interval.

The integration in our DFT is accomplished with trapezoidal summation.
(Simpson'’s rule cannot be employed because the time increment is not
constant.) Appendix A shows the numerical program which includes the
trapezoidal summation.

The purpose of this section is to examine the effect of a finite rather than
infinite time interval. In the first part, we examine the error that arises when a
time series is averaged over a finite interval. We will then apply the results to

the case of determining the amplitude of a harmonic signal in the presence of

12



equally-spaced sidebands. Proper choice of the averaging time is shown to lead

to the complete elimination of error.
1. Averaging Over Finite Time Intervals

Consider any time series F(t). This can be represented by the Fourier

expansion

F(t) = Z[G(f)cos(2n'ft) + H(f)sin(2nft)] , (3.3)
f

where f is the frequency. The dc component of F(t) can be analytically obtained

by averaging over an infinite time:
1 T
G0) = TITOO T ,[F(t)dt ) (3.4)

For finite values of the time T, the average only yields an approximate

value of the dc component. The general finite-time average is

T+T,

j F(t)dt , (3.5)
J

o

F=x

where T, is arbitrary. Substituting the Fourier expansion (3.3) into the average

(3.5), and performing the integration, yields

E_ Z[sin[hf(T +T,)] - sin(2nfT,) &)

- 2nfT

(3.6)

13




cos[2nf(T + T, )] - cos(2nfT, )

In the limit T — oo, note that Eq. (3.6) correctly reduces to G(0). Eq. (3.6) shows
that the effect of averaging over a finite time interval is to low-pass filter the time
series. The filtering depends upon the phase of the time window compared to
the time series. For example, for an average over -T/2 to T/2 (i.e., T, = -T/2),
the filter applied to G(f) is sin(=fT)/(nfT), and the filter applied to H(f) is zero.
This is in fact the simplest case with which to deal, but will continue with our
general choice (3.5) in order to ensure the generality of the results.

In Eq. (3.6), note that the filters simultaneously vanish if 2rfT = 2=, 4=, 67,
..., except for the G(f) filter at f = 0. Hence, if the Fourier components of the time
series are restricted to the equally-spaced values f = 1/T, 2/T, 3/T, ..., no error
results in the finite-time average; i.e., the value of Eq. (3.5) is G(0). The reason
for this is simply that the integration interval T in Eq. (3.6) corresponds to

integral numbers of cycles of these frequencies, so they will all average to zero.

2. Determination of the Amplitude of a Signal in the Presence of

Discrete Noise
We now consider the time series
F(t) = Acos(2nft +v) + Bcos[2n(f + Af)t + @] . (3.7)
The first term is considered to be the “signal,” and the second term the “noise,”
where Af > 0. The problem is to determine the signal amplitude A from F(t)

alone. Analytically, this can be accomplished by down-converting the signal
frequency f to dc, and then averaging:

14




.

1

A = lim — I F(t)cos(2nft)dt , (3.82)
-T

.
1
A, = lim = _[ F(t)sin(2xft)dt , (3.8b)
Towo T et
A= (A, +A)". (3.8¢)

Compared to the dc case (3.4), a factor of 2 has been included in Egs. (3.8a,b)
because half of the amplitude at frequency f is converted to zero frequency.
(The other half is converted to frequency 2f.)

As examined in Sec. 3.2A, the integrations (3.8a,b) will in general only be
approximate for a finite averaging time T. We thus consider the now-

approximate quantities

T+T,

A, = % ! F(t)cos(2nft)dt , (3.9a)
5 T+T, :
A, = T !F(t)sin(2nft)dt, (3.9b)

where T, is arbitrary.
The first problem is to ensure that the results are exact when B = 0 in Eq.

(3.7). This is readily seen to occur if the averaging time is an integral number of
cycles of the signal:

15




T = % n=1,23 .. . (3.10)

As shown in Sec. 3.2A, averaging over a finite time interval has the effect
of introducing a low-pass filter that yields no error if the frequency spacing of the
unwanted Fourier components is 1/T from zero frequency. Due to the down-
converting in Egs. (3.9a,b), this corresponds here to unwanted Fourier
components with spacing 1/T about the frequency f of the signal. That is, there

is no error due to a component of frequency f + mAf, wherem=1, 2, 3, ..., if
T = — (3.11)
Combining Egs. (3.10) and (3.11), we find that all error will be eliminated if
n=— n=123, .. (3.12)

In the implementation of a DFT, the integration time n/f and the frequencies f and
Af must be chosen such that the condition (3.12) holds. In practice, the
frequencies are usually chosen to be convenient numbers, so that their ratio is
automatically an integer. The result (3.12) is explicitly verified in the next

section.

3. Explicit Calculation of the Error Due to Finite-Time Averaging of

the Noise

From Egs. (3.9a,b), the errors that arise due to the presence of the noise
in Eq. (3.7) are

16




T+T,

2B
AA, = T jcos[Zn(f + Af)t + @]cos(2xft)dt , (3.13a)
TD

T+T, T+T,
= ?{cos(cp) J.COS[Z‘It(f + Af)t]cos(2=nft)dt — sin(e) jsin[Zn(f + Af)t]cos(2xft) dt} )
To TO

T+T,

2B
MA, = jcos[2n(fiAf)t+(p]sin(21tft)dt, (3.13b)
T

T+T, T+T,
= gi_[—3—|cos(q>) jcos[Zn(f + Af)t]sin(2xft)dt — sin(o) Isin[Zn(f * Af)t]sin(2nft)dt} .
T, To

¢

Using the identities cos(x)cos(y) = [cos(x+y)+cos(x-Yy)])/2, sin(x)cos(y) =
[sin(x+y)+sin(x—Yy)])/2, and sin(x)sin(y) = [-cos(x+y)+cos(x-y)}/2, we express Eqgs.

(3.13a,b) as

T+T,

AA, = ?_I:cos((p) I{cos[2n(2f + Af)t] + cos(2mAft)} dt
TD

(3.14a)

B T+T,
- sin(e) j {sin[2r(2f + Af)t] + sin(2rAft)} dt |,
To
B T+T,
AA, = =cos(o) j {sin2r(2f + Af)t] - sin(2rAft)} dt

T

(3.14b)

17




T+T,

+ %sin((p) j{cos[27r(2f * Af)t] - cos(21cAft)} at .
T

Consider the second terms in the integrands in Egs. (3.14a,b). Due to Eq.
(3.11), the integration is over one cycle of these terms, so the integration yields
zero. Using Egs. (3.10) and (3.11), we can express the period of the first terms
as 1/(2f £ Af) = 1/(2n/T £ 1/T) = T/(2n £ 1). Because this integration time T is an
integral number of this period, the integration yields zero. Hence, the errors
vanish (AA; = AA = 0), and so sidebands at f + Af do not contribute to Egs.
(3.9a,b).

Now suppose that there is another sideband at f + 2Af, and that Egs.
(3.10) and (3.11) still hold. The second terms in the integrands of Egs. (3.14a,b)
still vanish, because the integrations are over two cycles. The period of the first
terms is now T/[2(n £ 1)], which still leads to vanishing integrals because the

integration time T is an integral number of this period. The argument

generalizes to sidebands at f + mAf, wherem =1, 2, 3, ... .
C. TESTS OF THE NUMERICAL PROGRAM

To test the numerical program, we consider two simple cases. One is the
propagation of a pure tone and the other is the suppression of a weak signal of
high frequency by a high amplitude pump of low frequency in the preshock
region. In both cases, the numerical results are in excellent agreement with
analytical theories.

1. Pure Tone Propagation

Consider the pure tone
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u(0,t) = u, sin(2nft) | (3.15)

at x=0. Due to nonlinear effects, energy flows to harmonics of the fundamental
frequency which therefore grow as a function of distance. In the preshock
region, the energy in the higher harmonics equals the energy loss at the main
frequency. Consequently, the amplitude at frequency f decreases with distance.
From Eq. (2.10), in dimensionless variables (c = f§ = 1) the amplitude as a

function of distance is

B _ 2J(2mfugx)
17 2mfugx

(3.16)
According to the shock distance (2.11), Eq. (3.16) is valid only for distances x <
1/2=fu,, and the amplitude thus decreases monotonically.

Figure 3.1 shows a comparison between the numerical integration and
theory, for a signal with amplitude ug = 10~ and frequency f = 50. The shock
inception distance equals 31.83 units in this case. For 20 time steps per cycle
there is a small but significant error. Increasing the number of time steps to 200

gives excellent agreement with theory.
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Fig 3.1 Normalized amplitude as a function of distance for a pure tone injected at the origin.
The amplitude of the pure tone is 10~ and the frequency is 50. The points are the result
of numerical integration, and the solid line corresponds to the theoretical expression
(3.16). The squares correspond to 20 time steps per cycle, and the circles correspond to
200 time steps per cycle.

2. Suppression of a Signal by a Pump

As discussed in Ch. ll. and Sec. D., the suppression of a signal by a pump

is formulated in terms of the boundary condition (2.12) at x=0
u(0,t) = u, sin(2nef,t) + g sin(2n,1) | (3.17)

where the pump frequency is f, = 1 and the signal frequency is f. = 50. The

weak signal has amplitude 10~ and has little effect on the propagation of the
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pump with amplitude 1072, However, the pump will modulate the signal and
generate sidebands at frequencies f + f;,, thereby removing energy from the
signal. In dimensionless variables, Fenlon’s approximate solution (2.13) for the

evolution of the signal is
u(x,t) = usJo(ZTrfsupx)sin[ZﬁS(t - x/c)] : (3.18)

Figure 3.2 shows a comparison between the numerical integration and the
theory (3.18). The shock inception distance (2.11) for the pump equals 15.92
units. The number of time steps per cycle of the signal is 20. There is excellent

agreement between theory and numerical integration.
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Fig 3.2 Suppression of a signal with frequency 50 by a pump of amplitude 10 2 and frequency 1.
The signal’'s amplitude is normalized to its value of 10 ~* at the origin. The points are the
result of numerical integration, and the solid line corresponds to the theoretical
expression (3.18). The number of time steps per cycle of the signal is 20.
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IV. NUMERICAL SIMULATIONS OF ABSORPTION OF SOUND BY
NOISE

In this chapter we present numerical simulations of the absorption of
sound by noise in one dimension. We verify the Gaussian attenuation of a
signal in the presence of noise and present two new results. In the first, we
investigate the transition from Gaussian to Bessel dependence as a function of
resolution in the detection of a signal. In the second result, as a test of the
breakdown of translational invariance, we investigate the evolution of the

amplitude of a signal injected downstream from the noise.

A. ABSORPTION BY NOISE

As stated in Ch. I. and Sec. E., a small-amplitude signal of frequency f
interacting with finite-amplitude broadband noise is predicted to attenuate in
distance as a Gaussian. We choose the signal to be injected with peak particle

velocity us at x = 0, so the particle velocity of the signal at x = 0 is

Ugignai (0,1) = ug cos(2nft) . (4.1)

The rms (root-mean-square) amplitude of the particle velocity of the signal as a

function of position is predicted to attenuate as

u
Vsignal = :/%—e)(p(“ I~X2) ) (4.2)

where the Gaussian coefficient (2.14) is, in dimensionless units,

I = 2r%f2?,, (4.3)
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where ums is the dimensionless rms particle velocity of the noise, which is
constant in space (although the spectral components of noise change).

The noise is described at x = 0 by the particle velocity
Uy N n-1
Unoise (O, 1) = N é cos| 2n 1+T t+o,]. (4.4)

where ¢, are random phases. Note that the total average acoustic intensity of
the noise (4.4) is

(4.5)

urms

N
NS

The frequency components of the noise (4.4) are equally spaced in a
band of frequencies between 1 and 2. In the preshock region, the theory should
be accurate (i.e., the signal should attenuate as the predicted Gaussian) for a
sufficiently large number N of components of the noise. If all the phases in Eq.

(4.4) are set to n/2, the noise shock inception distance is (Fenlon, 1970)

P
" rug(BN-1)

(4.6)
For amplitude u, = 0.01 and N = 50 components, the shock inception distance
(4.6) is approximately L = 1.51 units. According to Eq. (2.7) random phases
would yield a larger shock inception distance because Eq. (4.4) with all the
phases set to n/2 has the maximum slope at the origin.

Figure 4.1 shows a comparison between the numerical integration and
theory, for a signal with amplitude us = 10~ and frequency f = 50. In the

numerical integration, there are 20 time steps per cycle of the signal. Note that
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the amplitude of the signal appears to asymptote to a nonzero constant value.
Increasing the averaging time does not improve this condition. Also, for the
parameters of the problem, we numerically determined the shock inception
distance to be greater than 1.4 units, so shocking is not responsible for the
departure from Gaussian attenuation. A possible explanation for the deviation
may be that the noise (4.4) has developed strong correlations. This is a subject

of future investigations.

Normalized Amplitude

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Distance

Fig 4.1 Attenuation of a signal with frequency 50 as a function of distance due to the noise (4.4)
with amplitude ug = 0.01. The points are the result of numerical integration with 20 time
steps per cycle of the signal. The curve corresponds to theory.

B. RESOLUTION OF DETECTION AND GAUSSIAN-TO-BESSEL
TRANSITION

The result obtained above depends on the resolution of the detection. If

the averaging time is less than the period of the lowest frequencies, poor
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resolution will result in fundamentally different behavior. Rather than the
monotonic decrease on the amplitude, the signal can exhibit restitution effects.
For discrete noise with equally spaced frequency components, therefore, poor
resolution restores reversibility.

The resolution of the detection explains a question that naturally arises
when it is noted that Rudenko’s Gaussian prediction does not depend upon the
bandwidth of the noise, but only upon the total average intensity. If the
bandwidth is reduced while the intensity is held constant, the amplitude of a
signal must continue to attenuate as the same Gaussian. In the limit when the
bandwidth is zero, however, the amplitude of a signal must have a Bessel-
function dependence (Ch. Il, Sec. E and Ch. lil, Sec. C-2). How is the transition
from Gaussian to Bessel dependence made? In principle, as long as the
bandwidth is not exactly zero, the signal will attenuate as the Gaussian, although
this will only be apparent for averaging times that are substantially greater than
the inverse of the bandwidth. In practice, the resolution of the detection will
eventually be insufficient as the bandwidth is reduced. The signal will then
effectively be in the presence of a pure tone, and the Bessel dependence of the
signal’s amplitude will be observed. This is a striking situation in which the time
reversibility of a system depends upon the observer. That is, the fundamental
property of time reversibility can only be established if the overall system of the
waves and the observer is considered.

Figure 4.2 shows the attenuation of a signal with frequency 50 due to the

noise
N
Upgiea (O/1) = %Z [2;:(1+%—N—1-]t+<pn] 4.7)

for two different resolutions. The band of frequencies is between 1.00 and 1.25,
with N = 50 components and amplitude up = 0.01. The results were obtained

with 20 time steps per cycle of the signal.
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Fig 4.2 Attenuation of a signal with frequency 50 as a function of distance due to the noise (4.7)
with amplitude uy; = 0.01. The circles are the result of numerical integration with 20 time
steps per cycle of the signal and averaging over a time of 400 (one period of the step
frequency 0.0025). The squares correspond to averaging over a time of 1 (one period of
the lowest frequency 1 of the band). The curve corresponds to the Gaussian attenuation
theory.

The results of high resolution are represented by circles. In this case, the
averaging time is 400. This time equals a period of the step frequency 0.0025,
which is the smallest frequency resulting from nonlinear interactions. The curve
represents the Gaussian attenuation theory. There is good agreement because
the sidebands, which result from different components of the noise interacting
with both themselves and the signal, are all averaged out (refer to Sec. B).

The squares correspond to averaging over a time equal to one period of
the lowest frequency of the band. This is the low resolution limit. The restitution
effects of the signal are apparent. The location of the zero depends on the
effective intensity of the noise when there is a lack of resolution of the
components of the noise, and thus may depend on the phases of the

components. Future investigations will address this issue.



C. DOWNSTREAM INJECTION OF A SIGNAL

As a test of the breakdown of translational invariance we consider the
evolution of a signal that is injected downstream relative to the noise at the
origin. The signal is expected to attenuate monotonically as a Gaussian. This is
suggested by the independence on the spectral shape of the noise in Rudenko’s
solution where the attenuation coefficient (4.3) depends only on the total energy
of the noise. As the noise propagates downstream, nonlinearities modify the
spectrum but the total energy of the noise remains the same.

On the other hand, the main assumption in Rudenko’s theory is that the
noise is normally distributed at the origin. As the noise propagates downstream
it may develop correlations due to nonlinearities. Deviations from the expected
Gaussian attenuation of a signal injected downstream may thus serve as a probe
of the degree of correlations of the noise.

Figure 4.3 shows the evolution of the amplitude of a signal injected
downstream at x = 0.3 units for the same parameters used in Sec. 4.1 and Fig.
4.1. We have chosen the initial amplitude of the signal injected at the
downstream point to be equal to the amplitude that the signal of Fig 4.1 injected
at the origin would have at that point. The solid line corresponds to the predicted
Gaussian with the downstream injection point as the origin. Also plotted in the
figure is the numerical and analytical attenuation of a signal injected at the origin.
As with the previous results, the fact that the numerical noise is nearly normal,
may be the origin for the disagreement between theory and numerical results at

distances larger that 1.3 units.
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Fig 4.3 Attenuation of a signal of frequency 50 as a function of distance due to the noise (4.4)
with amplitude up = 0.01. The squares correspond to a signal injected downstream at x =
0.3. The circles correspond to the signal injected at the origin. The curves correspond

to theory.
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V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

We have numerically investigated the attenuation of a monochromatic
signal in the presence of discrete noise in one dimension. The predicted
Gaussian attenuation has been verified by the numerical program, which is
based on Riemann’s implicit solution of the exact equation for the unidirectional
propagation of shockless sound. The program was checked for two cases in
which analytic solutions exist: propagation of a pure tone and the suppression
of signal by a pump wave.

We also presented two new results. In the first, we observed a transition
from Gaussian to Bessel dependence as a function of resolution in the detection
of a signal. This results shows that the time reversibility of a system depends
upon the observer. That is, the fundamental property of time reversibility can
only be established if the overall system of the waves and the observer is
considered.

In the second result, we investigated the evolution of the amplitude of a
signal injected downstream from the noise. We again observed the Gaussian
attenuation. This result explicitly shows that the attenuation length depends on

the distance the signal has traveled, thus displaying memory and breakdown of

translational invariance.

B. FUTURE WORK

Throughout this work, we have argued that small but significant
discrepancies between numerical results and the analytical predictions may

have their origin in the fact that the numerical noise is nearly normal. In fact,
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different sets of values of the random phases yield slightly different results about
an average value that agrees with theory except for large distances.

Future investigations should test the statistics of the numerical noise and
quantify the deviations from normal distribution at the origin. Deviations from the
normal distribution should also be quantified downstream where strong
correlations may develop due to nonlinearities. Light may be shed onto the
problem by using noise with quasiperiodic frequencies, where the spacing
between frequency components is incommensurate. In principle, nonlinearities
cause an infinite number of frequencies to be produced in this case. Hence, it
may be that substantially fewer initial frequency components of the noise are
required to yield an approximate Gaussian attenuation of a signal. This may be
important in applications where an efficient suppression of high frequency sound
is desired.

Another topic of future investigation should be stochastic
quasimonochromatic noise. In this case, both the dependence on the statistics
of the noise and the transition from Gaussian to Bessel dependence can be
probed. Based on our observation that this transition can be induced by
insufficient resolution of the detection, we believe that the slightest stochasticity
of the noise will cause the signal to attenuate as a Gaussian if the detection is

accurate.

32



APPENDIX A. FORWARD TIME NUMERICAL PROGRAM

/********************************************************************/

/* Numerical integration of Riemann's equation */
/* for propagation of sound in one dimension */
/* */

/********************************************************************/

/* This program simulates the propagation of a CW in the presence
of one dimensional noise with a flat distribution. The

signal's amplitude is calculated as a function of distance.

The noise is discrete and the number of components N can be

made to vary from one to several. Regardless of the number

of components, the total energy of the noise is kept constant

by dividing the peak amplitude of each noise component by the
square root of N.

LAST UPDATE : 21 OCTOBER 1996 */

/* PROCESSOR DIRECTIVES */
#include "math.h"

#include "stdio.h"

#include "stdlib.h"

/* MACRO DEFINITIONS */
#define pi 3.1415926535898
#define SIZE 100002

main ()
{
int N, /* number of noise components */
i, 3.k, 1;
double U[SIZE],

u[SIZE], /* dimensionless particle velocity arrays */

T[SIZE], /* dimensionless time arrays */

tau{SIZE],

r[102], /* random seed */

R[203],

R1([203],

uo, /*dimensionless peak velocity of one of noise
components */

us, /*dimensionless peak velocity of one of noise
components */

f0, /*frequency of signal */

x,dx, /*distance and distance step*/

t,dt, /*time and time step*/

max, /*maximum number generated from random function*/

seed, /*seed for random number generation*/

dl,dz,

al,a2, /*variables used for the LOCK-IN*/

k1,k2,k3,k4;

/* Reading the data form the input file */
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scanf ("%1f $1f $1f $1f %d\n", &u0, &us, &£0, &seed, &N) ;

/* Variables Initialization */

max=pow (2.0,31.0)-1.0;
dl=d2=t=x=0.0;

ub=ul*sqrt(1.0/N); /*thus, the noise energy is the input
ugr2 */
dt=0.001;
dx=0.1;
for (k=1; k<30; k++){ /*Initialize R matrices to zero */
R[k]=0.0;

}

for(1=0; 1<20; 1++){
srandom(seed) ;
for(i=0; i<N; i++){ /*Random phase of noise components */
r[il=(2.0*pi*random{) /max);

}
for(k=1; k<20; k++){ /*Propagate up to dist of k{max)*dx*/

for(i=0; i<SIZE; i++){ /*Time and velocity arrays
initialization */
U[i]=T[1]=0.0;
}

for(i=0; i<N; i++){ /*Flat noise in a band between
1 and 2 */
for(j=0; J<SIZE; j++){

T1jl=j*dt;

u{jl=ul*sin(2.0*pi* (1.0+ (double) (i)

/ (double) (N))*T{jl+xr[i]):
Uljl=u{jl+ulil;
} .
}

for(i=0; i<SIZE; i++){ /*Boundary conditions*/
Uli]=U[i)+us*sin(2.0*pi*f0*T[1i]);
}

for (i=0; i<SIZE; i++){ /*Riemann's propagation time*/
tauli]=T[i]-x;
taulil=tauli]-x/(1.0+U[i});
}

for(i=0; i<SIZE; i++){ /*Extracts the signal component only*/
Uli]=sin(2.0*pi*f0*tau(i]);
}

for(i=0; i<(SIZE-2); i++){/*In-phase and quadrature components*/

al=U[i); a2=U[i+1];
t=i*dt;
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kl=cos (2.0*pi*f0*t);
k2=cos (2.0*pi*f0* (t+dt})) ;
k3=sin(2.0*pi*f0*t);
kd4=s5in(2.0*pi*f0* (t+dt));

dl=dl+(((al*kl)+(a2*k2))* (tau[i+l]~tau[i])/2.0);
d2=d2+({(al*k3)+(a2*k4))* (tau[i+l]-tau[i])/2.0);

}

R1{k]=2.0*£f0*sqrt (dl*d1+d2*d2)/ (5000.0) ;
x=k*dx; dl=d2=t=0.0;
}

seed=seed+1.0;

for (k=1; k<20; k++){
R{k]=R[k]+R1[k];
}

x=0.0;
}
x=0.0;
for(k=1; k<20; k++){ /* Print the result */
printf ("$f %.12f\n",x,R[k]1/20.0};
x=k*dx;

}
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APPENDIX B. FORWARD TIME NUMERICAL PROGRAM: DOWNSTREAM

/*********************************************************************/
/* Numerical integration of Riemann's equation */
/* for propagation of sound in one dimension */
/* */

/*********************************************************************/

/* This program simulates the propagation of a CW in the presence
of one dimensional noise with a flat distribution. In particular,
this is designed to see how the absorption of signal put into the
developed noise works.

The signal's amplitude is calculated as a function of distance.
The noise is discrete and the number of components N can be
made to vary from one to several. Regardless of the number
of components, the total energy of the noise is kept constant
by dividing the peak amplitude of each noise component by the
square root of N.

IAST UPDATE : 21 OCTOBER 1996 */

/* PROCESSOR DIRECTIVES */
#include "math.h"
#include "stdio.h"

#include "stdlib.h"

/* MACRO DEFINITIONS */
#define pi 3.14159265
#define SIZE 100002

main ()
{
int N, /* number of noise components */
i, i,k 1;
double U[SIZE],

u[SIZE], /* dimensionless particle velocity arrays */

T[SIZE], /* dimensionless time arrays */

tau[SIZE],

r[l02], /* random seed */

R[203],

R1[203],

uo, /*dimensionless peak velocity of one of noise
components */

us, /*dimensionless peak velocity of one of noise
components */

fo, /*frequency of signal */

x,dx, /*distance and distance step*/

t,dt, /*time and time step*/

max, /*maximum number generated from random function*/

seed, /*seed for random number generation*/

di,dz,

al,a2, /*variables used for the LOCK-IN*/
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k1,k2,k3,k4;
/* Reading the data form the input file */
scanf ("%1f $1f $1f $1f $d\n", &u0, &us, &f0, &seed, &N) ;
/* Variables Initialization */

max=pow(2.0,31.0)-1.0;
dl=d2=t=x=0.0;

u0=ul*sqrt(1.0/N); /*thus, the noise energy is the input
u0~2 */
dt=0.001;
dx=0.1;
us=us*exp (- (2.0*pi*50.0*u0*0.3)*(2.0*pi*50.0*u0*0.3)*N/4.0);
for(k=1; k<30; k++){ /*Initialize R matrices to zero*/
R[k]=0.0;

}

for(1=0; 1<20; 1++){
srandom(seed) ;
for(i=0; i<N; i++){ /*Random phase of noise components*/
r{i]=(2.0*pi*random() /max) ;

}

for(k=3; k<20; k++){ /*Propagate up to dist of k(max)*dx*/

/**********************************************************************/

/* Propagate the noise componets up to 0.3m first */
/**********************************************************************/

x=0.3;
for(i=0; i<SIZE; i++) { /*Time and velocity arrays
initialization */
U[i]=T[i]1=0.0;
}

for(i=0; i<N; i++){ /*Flat noise in a band between
1 and 2*/
for (j=0; J<SIZE; j++){
T[jl=3*dt;
u[jl=ul*cos (2.0*pi* (1.0+(double) (i)/
(double) (N))*T[jl+r[i]);
Ul3I=U[jl+ulil;
}
}

for(i=0; i<SIZE; i++){ /*Riemann's propagation time for
noise*/
T[i]=T[i]-%/(1.04+U[1i]);
}

/**********************************************************************/

/* Add signal to developed noise and propagate both of them */
/* up to k(max)*dx */

/**********************************************************************/
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x=k*dx;

for(i=0; i<SIZE; i++){ /*Inject the signal */
U[i]=U[il+us*cos (2.0*pi*f0*T[i]);
}

for(i=0; i<SIZE; i++){ /*Riemann's propagation time for signal
and noise*/
tauli]=TI[i];
taulil=tau(il-(x-0.3)/(1.0+U[i]);
}

for(i=0; i<SIZE; i++){ /*Extracts the signal component only*/
Ul[il=us*cos (2.0*pi*fO*T[i]);
)

for(i=0; i<SIZE-2; i++){ /*In-phase and quadrature components*/

al=U[i]; a2=U[i+1};
t=i*dt;

kl=cos (2.0*pi*fO0*taulil]);
k2=cos (2.0*pi*f0* (t+dt) ) ;
k3=sin(2.0*pi*fO0*tau(i]):;
kd=sin (2.0*pi*f0* (t+dt));
dl=dl+ (al*kl)* (taufi+l]}-tauli]);
d2=d2+ (al*k3)* (taufi+1l]-tauli]);

}

R1[k]=2.0*£0*sqrt (d1*dl+d2*d2)/ (5000.0*0.0001);
x=k*dx; dl=d2=t=0.0;
}

seed=seed+1.0;
for(k=3; k<20; k++){
R{k]=R[k]+R1[k]:
}
}

for (k=3; k<20; k++){ /*Print the result*/
x=k*dx;
printf ("%f %.12f\n",x,R[k1/20.0);

}
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